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Abstract A total of 118 halophilic archaeal collection of
strains were screened for lipolytic activity and 18 of them
were found positive on Rhodamine agar plates. The
selected Wve isolates were further characterized to deter-
mine their optimum esterase and lipase activities at various
ranges of salt, temperature and pH. The esterase and lipase
activities were determined by the hydrolysis of pNPB and
pNPP, respectively. The maximum hydrolytic activities
were found in the supernatants of the isolates grown at
complex medium with 25% NaCl and 1% gum Arabic. The
highest esterase activity was obtained at pH 8–8.5, temper-
ature 60–65°C and NaCl 3–4.5 M. The same parameters for
the highest lipase activities were found to be pH 8, temper-
ature 45–65°C and NaCl 3.5–4 M. These results indicate
the presence of salt-dependent and temperature-tolerant
lipolytic enzymes from halophilic archaeal strains. Kinetic
parameters were determined according to Lineweaver–
Burk plot. The KM and Vmax values were lower for pNPP
hydrolysis than those for pNPB hydrolysis. The results
point that the isolates have higher esterase activity compar-
ing to lipase activity.

Keywords Halophilic archaea · Esterase · Lipase · 
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Introduction

The extreme environments found on the planet are inhab-
ited by microorganisms, which belong to the Archaeal and
Bacterial domains of life [24]. Extreme environments com-
prise sites of extreme temperature, pH, pressure and salin-
ity. Microorganisms that are able to grow in the presence of
high salinity are determined in all three domains of life:
Archaea, Bacteria and Eukarya [14]. The halophilic archa-
eal strains that require at least 12% (2 M) NaCl for growth
have a number of useful applications in biotechnological
processes and potential new applications are being investi-
gated. For instance, they produce bacteriorhodopsin (used
in information processing and ATP generation), novel
extracellular polysaccharides, exoenzymes (amylase, cellu-
lase, xylanase, lipase and protease) and poly-�-hydroxyalk-
anoate (used in biodegradable plastic production), and a
protein from Halobacterium salinarum has signiWcance in
cancer research [3, 17, 23, 30].

The growing demand for more eVective biocatalysts has
been satisWed either by improving the properties of existing
proteins or by producing new enzymes. The majority of the
industrial enzymes known to date have been extracted
mostly from bacteria and fungi [7, 9]. Until now, only a few
archaeal enzymes have been found to be useful in industrial
applications [10, 30]. Based on the unique stability of
archaeal enzymes at high temperature and salt concentra-
tion and at extremes of pH, they are expected to be a very
powerful tool in industrial biotransformation processes that
run at harsh conditions. Particularly, halophilic archaea are
the most likely source of such enzymes, because not only
are their enzymes salt-tolerant, but many are also thermo-
stable. Concerning to production of hydrolytic enzymes,
moderately halophilic bacteria were reported not to be very
promising, apart from production of DNase enzyme by
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Gram-positive halophilic bacteria [26]. The potential use-
fulness of halophilic archaeal enzymes in biotechnological
processes is still an open question. Interest in lipolytic
microorganisms has increased in recent years due to the
vast industrial applications of the enzyme [21]. Lipases as a
class of hydrolytic enzymes have experienced the greatest
market increase during the last few years with their wide
applications ranging from detergents to food industry [8,
27, 28]. Esterases (EC 3.1.1.3) and lipases (EC 3.1.1.1)
hydrolyze triglycerides to fatty acids and glycerol, and
under certain conditions catalyze the reverse reaction [28].
Esterases catalyze the hydrolysis and formation of short-
chain fatty acid esters, while lipases act mostly on long-
chain acylglycerols [8]. Some lipases are also able to
catalyze transesteriWcation and enantioselective hydrolysis
reactions [16]. The term “lipolytic activity” used in this
report refers to activities of lipases and esterases.

The extremophiles are promising organisms for the pro-
duction of enzymes, which are able to function under high
temperature and salt concentration and under extremes of
pH. Recently, it was published that Lakes of Turkey are
rich sources of halophilic archaeal microorganisms [19]
and some of these strains were characterized in a phyloge-
netic manner [20]. A screening method performed for the
isolation of extracellular enzyme producers will provide the
possibility to use diVerent halophiles as a source of extrem-
ophilic enzymes in biotechnological processes. In this
study, we describe a screening method for determination of
extracellular lipolytic activity, which is produced by 118
halophilic archaeal strains isolated from diVerent hypersa-
line environments in Turkey. The optimum pH, tempera-
ture and salt concentration of the extracellular esterase and
lipase activities and kinetic parameters were also deter-
mined for further characterization.

Materials and methods

Archaeal strains, growth conditions and screening 
for lipolytic activity

A total of 118 halophilic archaeal collection of strains iso-
lated from Salt Lake (Ankara), Aci Lake (Denizli) and
Tuzla Lake (Kayseri) located in Turkey were routinely cul-
tured in Sehgal–Gibbons (SG) medium, which contains the
following (g/l): NaCl, 250; MgSO4·7H2O, 20; KCl, 2;
sodium citrate (trisodium salt), 3; casamino acids, 7.5;
yeast extract, 1; FeSO4·7H2O, 0.0023 [19]. Agar plates con-
tained 2% (w/v) agar. All cultures were incubated at 37°C
and liquid cultures were incubated in an orbital shaker
(175 rpm).

The halophilic archaeal isolates were screened for
lipolytic activity on Rhodamine B agar plates at 37°C.

Sterilized SG medium was supplemented with 2.5% olive
oil (w/v) and 0.001% (w/v) Rhodamine B solution. The cul-
tures were grown at 37°C for 12 days. Afterwards, the
screening of lipolytic activity of the strains was monitored
under UV light at 350 nm as orange halos appearing around
the colonies [1, 12]. The growth of the selected Wve isolates
was determined by the increase in optical density at
600 nm, and lipolytic activity was routinely assayed during
7 days of culture period.

Esterase and lipase activity assays

The selected isolates were inoculated in 250-ml Erlenmeyer
Xasks containing 50 ml SG medium supplemented with
either 1% gum Arabic or 1% olive oil or 1% gum
Arabic + 1% olive oil. Cells were harvested by centrifuga-
tion at 15,000 rpm for 20 min at 4°C, and the supernatant
was used as crude enzyme source. Lipase and esterase
activities were determined by using pNPP (p-nitrophenyl-
palmitate) and pNPB (p-nitrophenylbutyrate) as substrates,
respectively [2, 13]. Both substrates were dissolved in
2-propanol to give a Wnal concentration of 1 mM in the
reaction mixture. pNPP solutions were mixed with Tris–HCl
buVer containing gum Arabic and Triton-X100 as emulsify-
ing agents, which were not added for the pNPB assay. Fol-
lowing the addition of 1.5 ml of 0.25 M Na2CO3 solution to
stop the reaction, the amount of pNP released at the end of
the reaction time (5 min) was measured at 410 nm against a
blank. One enzyme unit was deWned as the amount of
enzyme that liberates 1 �mol of pNP per min and per 1 ml
of supernatant.

The eVect of salt concentration, pH and temperature

The eVect of salt concentrations on esterase and lipase
activities were measured at 40°C in 50 mM Tris–HCl, pH
8, containing diVerent Wnal NaCl concentrations ranging
from 2 to 5 M. The eVect of pHs on esterase and lipase
activities at 40°C and 4 M NaCl concentration were deter-
mined in 50 mM acetic acid/acetate buVer for pH range
5–6, and in 50 mM Tris–HCl buVer for pH range 6.5–9.
The molar extinction coeYcient values were diVerent for
varied pHs; therefore, the standard curves for pNP for each
pH values were constituted. The dependence of lipolytic
activity to temperature was determined in 50 mM Tris–HCl
buVer at pH 8 and 4 M NaCl concentration by applying
temperatures in the range of 30–70°C.

Kinetic studies

The eVect of substrate (pNPP and pNPB) concentrations
(0.067–1 mM) on the reaction rates of the crude lipolytic
enzymes were assayed by using standard enzyme assay.
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The Michaelis–Menten constant (Km) and the maximum
velocity for the reaction (Vmax) with pNPP and pNPB as
substrates were calculated by Lineweaver–Burk plot.

Results and discussion

Screening of isolates and lipolytic activity

The 118 strains were screened for their potential lipolytic
activity and only 18 of them were positive on Rhodamine
agar plates. The best Wve strains, which were named as
A43, B53, E7, A138 and B49, were selected according to
the size of halos formed in the speciWc plate assay. The
screening results indicated that most of the halophilic iso-
lates did not express any lipolytic activity. A study carried
out by moderately halophilic bacteria gave similar results,
and they reported that, from a total of 9,848 colonies iso-
lated on the screening media, only 207 lipase producers
were detected [26].

In this study, lipolytic activity positive isolates were
tested for their potential to produce esterase and lipase
activity on SG broth medium containing 1% gum Arabic or
1% olive oil or 1% olive oil + 1% gum Arabic by monitor-
ing pNPB and pNPP hydrolysis, respectively. As a result,
higher lipase production was found to be on SG broth with
1% gum Arabic. In the current study, addition of the gum
Arabic to the medium led to high growth of the isolates and
presumably this aVected the enzyme production. Several
surfactants, such as gum Arabic, have often been proposed
as a means to increase extracellular lipase production of
certain microorganisms, due to their potential ability to
increase cell wall permeability and/or to release cell bound
enzymes [5].

When the lipase activities of the strains in the culture
broth were compared with the lipase activities of the strains
on the agar media by comparing the size of halos, there was
no correlation. The level of maximum growth rates was
reached at the Wfth day for each of growth periods, and then
the cultures entered into stationary phase. The maximum
lipolytic activity of the each strain was also detected in the
Wfth day, after which the rates of pNPP and pNPB hydro-
lyzing activities were decreased. This decrease may be due
to the production of protease by the strains at the same time
as explained before [29].

EVect of pH on pNPB- and pNPP-hydrolyzing activities

The inXuence of pH on the pNPB-hydrolyzing activity
(Fig. 1) and pNPP-hydrolyzing activity (Fig. 2) of the
isolates was determined. B53, A138 and B49 had the
maximum lipolytic activity at pH 8 for both pNPB and
pNPP substrates. However, in the case of A43 and E7, the

maximum activities were detected at pH 8.5 for pNPB-
hydrolyzing activity and at pH 8 for pNPP-hydrolyzing
activity, respectively. It was observed that while pH was
strongly eVective on the pNPB-hydrolyzing activities of E7
and pNPP-hydrolyzing activities of B49 and A138, the
hydrolytic activities of other isolates were not aVected
greatly with pH diVerences.

In our knowledge, there have been only a few studies
on the production of lipolytic enzymes by this class of
organisms. Bhatnagar et al. [1] investigated the lipolytic
activity of Natronococcus TC6 strain by growing them at
medium with diVerent pH. They found the highest activity
on the medium with pH 8 for pNPB-hydrolysis and with
pH 7.5 for pNPP-hydrolysis. However, in that study, the
eVect of pH was investigated as a component of the media
other than reaction mixture like we did in the present
study. In another study with the same strain, the maxi-
mum activity for pNPP-hydrolysis was reported to be at
pH 7 [2].

Fig. 1 The eVect of the pH on the esterase activity of the isolates
determined by pNPB hydrolysis. Isolates were represented as follows:
(Wlled circle) 49, (open square) 53, (open diamond) 43, (open triangle)
7, (Wlled triangle) 138
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Fig. 2 The eVect of the pH on the lipase activity of the isolates deter-
mined by pNPP hydrolysis. Isolates were represented as follows:
(Wlled circle) 49, (open square) 53, (open diamond) 43, (open triangle)
7, (Wlled triangle) 138
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EVect of salt concentration on pNPB- 
and pNPP-hydrolyzing activities

The eVect of salt concentrations on the extracellular hydro-
lytic activity of the strains for the hydrolysis of pNPB
(Fig. 3) and pNPP (Fig. 4) was determined in the salt con-
centrations range between 2 and 5 M NaCl. Although
supernatant of the strains showed their maximum esterase
and lipase activities between 3 and 4.5 M NaCl, it was
obvious that the highest activities of the isolates on pNPP
hydrolysis have a more narrow range comparing to pNPB
hydrolysis (Figs. 3, 4). In the current study, we determined
that the lipase activities of the strains increased until 4 M
NaCl and then dropped markedly. In a similar study, Boutaiba
et al. [2] investigated the eVect of salt concentrations of
extracellular lipolytic activity of Natronococcus sp. and
found that the activity increased with salt concentration up
to 4 M NaCl and then decreased. In a biotechnological
view, enzymes excreted into the media, such as the lipase
studied here, also must work at salt concentrations at which
other enzymes would lose their properties. These properties
make them valuable because halophilic enzymes are not

only able to deal with high ionic strength in their environ-
ment but also need it to maintain function and structure [6].
In addition, it is well established that hydrolytic enzymes of
halophilic archaea are salt-dependent enzymes. For
instance, the best activity of �-amylase is at 3 M NaCl [22],
protease is at 4.3 M NaCl [11], extracellular serine-protease
is at 4 M NaCl [25], and of xysilosidase is at 2.8 M NaCl
[31].

EVect of temperature on pNPB- and pNPP-hydrolyzing 
activity

The eVect of temperature ranging from 30 to 70°C on the
pNPB (Fig. 5) and pNPP-hydrolyzing activities (Fig. 6) of
the strains were investigated at 4 M NaCl and at pH 8. The
maximum esterase activities occurred at 65°C for pNPB
hydrolysis for all strains except B49, for which it was
observed at 60°C (Fig. 5). In the case of pNPP hydrolysis,
the maximum lipase activities were observed at 45°C for
A43, 55°C for B53 and E7, 60°C for B49 and 65°C for
A138 (Fig. 6). Maximum pNPB-hydrolyzing activities usu-
ally were reached at higher temperatures when compared
with the temperatures at which pNPP hydrolyzing occurred.
However, A138 and B49 showed the maximum pNPP and
pNPB hydrolysis at the same temperature. In this study, the
maximum activities generally exhibited at 55°C or higher
temperatures; therefore, lipolytic activity of our halophilic
strains can be deWned as not only salt-dependent but also as
thermo-tolerant. We also noted that lipolytic activity of our
strains is sort of thermo-dependent until about 60°C, after
which activities dropped (Figs. 5, 6).

Kinetic parameters

The kinetic parameters determined in this study were
obtained from crude enzymes other than puriWed enzymes.

Fig. 3 The eVect of the NaCl concentration on the esterase activity of
the isolates was determined by pNPB hydrolysis. Isolates were repre-
sented as follows: (Wlled circle) 49, (open square) 53, (open diamond)
43, (open triangle) 7, (Wlled triangle) 138
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Fig. 4 The eVect of the NaCl concentration on the lipase activity of
the isolates determined by pNPP hydrolysis. Isolates were represented
as follows: (Wlled circle) 49, (open square) 53, (open diamond) 43,
(open triangle) 7, (Wlled triangle) 138
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Fig. 5 The eVect of the temperature on the esterase activity of the iso-
lates determined by pNPB hydrolysis. Isolates were represented as fol-
lows: (Wlled circle) 49, (open square) 53, (open diamond) 43, (open
triangle) 7, (Wlled triangle) 138
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KM and Vmax values were calculated from Lineweaver–
Burk plot constructed by using activity values depending
on substrate concentrations for esterase activity by pNPB
and for lipase activity by pNPP. The activation energies
(Ea) were determined from the temperature dependence of
the activity according to Arrhenius equation. Results are
shown in Tables 1 and 2 for pNPB- and pNPP-hydrolyzing
activities, respectively. It was found that, the KM and Vmax

values were lower for pNPP hydrolysis than those for
pNPB hydrolysis. The values of KM, which were getting
higher while the aYnity of enzyme to substrate was getting
lower, vary considerably from one enzyme to another or for
a particular enzyme with diVerent substrates [4]. Therefore,
to compare enzymes of the isolates for their catalytic
eYciencies, the Vmax/KM ratios are more useful. As seen in

the results, the Vmax/KM ratios are higher at esterase activities
for all strains; therefore, it can be said that in the current
study in terms of lipolytic activity the isolates have higher
esterase activity. In parallel to our results, various studies
comprising the lipolytic activity of halophilic organisms
revealed that esterase activity is usually higher than lipase
activity [15, 26]. However, Boutaiba et al. [2] reported the
highest lipolytic activity against pNPP (include 16-C fatty
acid) when they tested other substrates containing C2 to
C18 long-chain fatty acids.

Halophilic microorganisms that are able to live in
saline environments oVer a multitude of actual or poten-
tial applications in various Welds of biotechnology.
Enzymes of halophilic archaeas can provide distinct
advantages over their classical counterparts in the devel-
opment of new bioconversion processes, potentially oVer-
ing resistance to high salt conditions or high temperatures
and enabling the use of organic solvents at low water
activity [14, 18].

The current study was carried out with the purpose of
deWning lipolytic enzymes in halophilic archaea isolates,
which are adapted to live at extreme salt environments. Fol-
lowing the discovering of the lipolytic enzymes, they were
further characterized to determine their tolerance with pH,
temperature and salt alterations, and Wnally, their kinetic
parameters were calculated. As a result, we have shown
that the lipolytic enzymes from our halophilic isolates are
also active under high temperature (until 60–65°C) and pH
conditions (until pH 8–8.5). In addition, the isolates were
found to have higher esterase activity comparing to lipase
activity on the basis of kinetic parameters. However, it
would be more informative if lipolytic enzymes are puriWed
from the isolates and then characterized, which is the next
step of the current work.
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